
Sensor Data Distribution With Robustness and
Reliability - Toward Distributed Components

Model

Charles Lee
SAIC

NASA Arnes Research Center
Moffett Field, CA. 94035

650-604-6054
clee@ mail.arc.nasa.gov

Abstract-In planetary surface
exploration mission, sensor data
distribution is required in many aspects,
for example, in navigation, scheduling,
planning, monitoring, diagnostics, and
automation of the field tasks. The
challenge is to distribute such data in the
robust and reliable way so that we can
minimize the errors caused by
miscalculations, and misjudgments that
based on the error data input in the
mission. The ad-hoc wireless network on
planetary surface is not constantly
connected because of the nature of the
rough terrain and lack of permanent
establishments on the surface. There are
some disconnected moments that the
computation nodes will re-associate with
different repeaters or access points until
connections are reestablished. Such a
nature requires our sensor data
distribution software robust and reliable
with ability to tolerant disconnected
moments. This paper presents a
distributed components model as a
framework to accomplish such tasks.
The software is written in Java and
utilized the available Java Message
Services schema and the Boss
implementation. The results of field
experimentations show that the model is
very effective in completing the tasks.

Rxhard L. Alena

NASA Ames Research Center
Moffett Field, CA. 94035

Richard.L.Alena@nasa.gov
650-604-0262

1. INTRODUCTION

Sensor data is essential to many aspects
of planetary surface exploration mission.
For planning, the sensor data are needed
as inputs of the location, environment,
and distances. For scheduling, senor data
are needed for calculation of the
duration, time, position, and routs. For
operation, sensor data needed to
calculate the location, progress, the
health status, etc. The data acquired from
sensors are real time stream and are
needed by real time. Parallel processing
of those data to the end need introduces
the reliability issue. The major causes of
the less reliable are large communication
overhead, and difficult of multiple
threading programming. To distribute
sensor data in the reliable way, we
experimented different schema,
framework to find out the robust and
reliable system. We finally selected the
Message oriented middleware as
distributed infrostructure [3]. Message-
oriented middleware is a category of
inter-application communication
software that presents an asynchronous

message-passing model as opposed to a
requesthesponse model. As far as the
client’s concern, it is close to real-time
processing [4]. Most MOM systems are
based around a message queuing system.
The primary advantage of a message-
oriented communications protocol is the
ability to store, route, and resend a
message that is to be delivered.

Most MOM systems provide a persistent
storage to hold messages until they are
successfully transferred. This means that
it is not necessary for both the sender
and receiver to be connected at the same
time. This is meful for deahg with
faulty connections, unreliable networks,
and timed connections. It also means
that if a receiver fails to receive a
message for any reason, the sender can
continue unaffected, since the messages
will be held in the message store and
will be transmitted when the receiver
reconnects.

MOM systems present two messaging
models:

Point to point: This model [2] is
based on message stores known as
queues. A sender sends a message to
a specified queue. A receiver
receives messages from the queue. A
queue can have multiple senders and
receivers, but an individual message
can only be delivered to one
receiver. If multiple receivers are
listening for messages on a queue,
the underlying MOM system usually
determines which receiver will
receive the next message. If no
receivers are listening on the queue,
messages remain in the queue until a
receiver attaches to the queue.
Publish Subscribe This model [l] is
based on message stores known as

topics. Publishers send messages to a
topic. Subscribers retrieve messages
from a topic. Unlike the point-to-
point model, many subscribers can
receive the same message.

A message-driven bean must declare
deployment information about itself in a
deployment-descriptor file named ejb-
jar-xml. The EJB container handles the
duties of subscribing the bean to the
topic or connecting it to the queue based
on information placed in the deployment
descriptor.

The ejb-jar.xmZ file contains:
0 The fully-qualified class name of

the message-driven bean
0 A name for the message-driven

bean
0 The destination type of the bean
0 Transaction attributes
0 Security information

The following is an example of a typical
ejb-jar.xmZ file:
<ejb-j ar>

<enterprise-beans>
<message-driven>

<ejb-name>M yMDBdejb-name>
<ejb-

class>com.jeffhanson.ejb.MyMDBdejb-
class>

<transaction-
type>Containerdtransaction-type>

<message-driven-destination>

t ype>j avax. jms. Topicddest ination-
type>

<destination-

dmessage-driven-destination>
<security- identity>

<run-as-specified-identit y>
<role-name>s ystemdrole-

drun-as-specified-identity>
name>

dsecurit y-identity>
dmessage-driven>

denterprise-beans>
dejb-j ar>

2. Overview of JMS

A message-driven bean (MDB) is an
EJB that functions as a JMS message
consumer. Unlike session beans or entity
beans, clients cannot access message-
driven beans directly. Also, unlike
session beans and entity beans, a
message-driven bean does not have
remote or home interfaces. The only
access a client has to a messagedriven
bean is through a JMS destination (topic
or queue) of which the message-driven
bean is listening.

A MDB must implement two interfaces:

[I] javax.jms.Messagelistener--
This interface defines the
onMessage callback met hod.
When a message is put on the
queueltopic, the onMessage
method of the message-driven
bean is called by the EJB
container and passed the actual
message.

[2] javax. ejb.MessageDrivenBean--
This is the EJB interface that
contains the EJB lifecycle
methods:
ejbCreate()--called by the EJB
container when the message-
driven bean is created
ejbRemove()--called by the EJB
container when the message-
driven bean is destroyed or
removed from the EJB pool
setMessageDrivenContext(Mess
ageDriven Context context) - -
called prior to ejbCreate and

passed the message-driven
context by the EJB container

The context has runtime information
such as transaction data.

The diagram in Figure 1 illustrates the
interactions between a JMS message, a
client, a topic, an application server, an
EJB container, and message-driven bean
instances.

As mentioned before, message-driven
beans do not have remote or local
interfaces as with session beans and
entity beans. Message-driven beans are
not located by client classes, and client
classes do not directly invoke methods
on them. All access to a message-driven
bean is through a JMS topic or queue
which directs messages at the message-
driven bean through the EJB container.
The EJB container ultimately passes the
JMS message to the message-driven
bean through the bean's onMessage
method. All message-driven beans must
imp le ment the
javax. ejb.MessageDriven33ean and
javax, jms.MessageListener interfaces, as
the example illustrates.

Message-Oriented-Middleware provide a
common reliable way for prograkts to
create, send, receive and read messages
in any distributed Enterprise System
MOM ensures fast, reliable
asynchronous electronic communication,
guaranteed message delivery, receipt
notification and transaction control.

The Java Message Service (JMS)
provides a standard Java-based interface
to the message services of a MOM of
some other provider.

Messaging systems are classified into
different models that determine which
client receives a message. The most
common messaging models are:

QI Publish-Subscribe Messaging
0 Point-To-Point Messaging
9 Request-Reply Messaging

Not all MOM providers support all these
models .

Publish-Subscribe
Messaging

Figure 1 Publish subscriber Messaging

When multiple applications need to
receive the same messages,, Publish-
Subscribe Messaging is used. The
central concept in a Publish-Subscribe
messaging system is the Topic. Multiple
Publishers may send messages to a
Topic, and all Subscribers to that Topic
receive all the messages sent to that
Topic. This model, as shown in Figure 1,
is extremely useful when a group of
applications want to notify each other of
a particular occurrence.

In Publish-Subscribe Messaging, there
may be multiple Senders and multiple
Receivers.

Point-To-Point Messaging

When one process needs to send a
message to another process, Point-To-

Point Messaging can be used. However,
this may or may not be a one-way
relationship. The client to a Messaging
system may only send messages, only
receive messages, or send and receive
messages. At the same time, another
client can also send andor receive
messages. In the simplest case, one
client is the Sender of the message and
the other client is the Receiver of the
message.

There are two basic types of Point-to-
Point Messaging systems. The first one
involves a client that directly sends a
message to another client. The second
and more common implementation is
based on the concept of a Message
Queue. Such a system is shown in Figure
2.

Figure 2. Point to Point Messaging

The point to note in Point-to-Point
messaging is that, even though there
may be multiple Senders of messages,
there is only a single Receiver for the
messages.

JMS Parent

Destination

Connection econnection
Factory

Connect ion

- --

- _ ” ..-_ - ,

M M Nonm Fublshcr
,

3. ARCHITECTURE DESIGN

We selected Publish Subscribe
architecture for our data distribution. In
our project requirements, the data is
distributed to multiple remote clients and
the publisher may publish the data to a
remote machine. The requirements are
satisfied with this architecture.

Figure

COrtdllOP
__t

As Figure 3 shows, the Astronaut carry a
backpack and the software is running on
the computer in the pack. The gps unit is
commect to the computer and the data is
distributed to the JMS server by using
the gps server model. The client will
access the data by subscribe it using the
API provided by the GPS server
developer.
The Bio information of the Astronaut is
also distributed by the architecture as
shown in the Figure 4.

Figure 4. Biosensor architecture

We are collaborating with a Robotic
Rover team (ERA team) for the
exploration field test and need to
distribute sensor data to their server so
the robot will be able to do some action
like, following astronaut, take picture at
certain point that is related to astronaut
or just take a picture of an astronaut.
Since our other team (ERA team) is
using CORBA framework [6] for their
distributed object model, we have to
distribute the data across CORBA object
by connecting our CORBA client with
sensor and push the data to the Rover
object running on CORBA ORB.

The architecture of the data distribution
to ERA server is shown in Figure 5. The
ERA has a server called Executor to
accept the data and store in the local
memory for the period of time. We need
to push the data in the rate that keep the
data refresh before the memory time out.

ERA
Llnux QSPS

Figure 5. The ERA CORBA server.

The subscribed client will receive the
stream of data by intercept the message
listener. One of such client is the Rover
monitor. It can show the movement of
rover on the map in the real time. The
figure 6 shows the monitor screen when
we did a test in Moffett Field, CA.

The circle with cross is the moving
cursor to show the rover location by
interpreting the coordinates received
from subscripting to GPS topic.

4. THE RELIABILITY AND ROBUSTNESS

The architecture mentioned above has
the capability of reliability and

robustness. However, some issues are
not covered in the architecture itself. The
most concerned to us is the network
connectivity in the severe environment,
lack of the power transmission of the
wireless network in the field. We have
the simulation test in the Mars Desert
Research Station in Utah. The network
has outage in the point that the
astronauts or the rover is out of the
wireless signal coverage. And it will
recover when they move back to the
place where the signal is strong enough.
The short-term network outage is a
problem that makes data distribution
unreliable. Either the connection loss
from the astronaut to JMS server or from
the ERA to the JMS server machine, the
data distribution will no be able to reach
the destination. The took a software
measure to overcome the problem. Each
time when network connection lost, we
retry the connection until the connection
recovered. The retry is performed in the
way that the data is not waiting for the
retry to come back, instead, we set a
counter that will set to a period of time,
like 5 second, as a interval that retry will
be attempt. In this way, we do not tight
up CPU time, neither do the data
resource.

In the subscriber model, we also do the
retry to overcome the network outage
problem. The Logic is as follows:

In the processing of data loop
If (reconnectCounter==O)

DoReconnect ();
Publish();

Reconnect Counter--;
Else

Endif

When (Connect ioexcept ion)
Setfieconnectcounter;

t

End loop

The other issue is that when use
SerialConnection class to acquire data
from the COM port, it can not be halt for
other tasks since the nature of the data
stream come in from COM port is real-
time continuers. So we have a separate
thread to do the data distribution and this
SerialConnection class is dedicated to
acquire and store the data in the memory
for further processes.

5. CONCLUSION

The field tests and experiments show
that the distributed components model
that utilized JMS architecture is very
suitable for the real time sensor data
distribution. It produced the reliable and
robust data stream to multiple clients in
real time. The publish subscriber model
is very scalable even for a large amount
of sensors data process. When we have
multiples sensor data to be published,
the multiple message beans can be
created and different topics also can be
easily created. The network failure can

software routine.
be easily a\i~i&j by x~+q-itLqo pvtra

b

REFERENCES

[l] P. Eugster, P. Felber, R. Guerraoui,
and A.-M. Kermarrec,”The Many
Faces of PublishlSubscribe”, ACM
Computing Surveys, Volume 35,
Issue 2, pp 114-131, June 2003.

[2] L. Garces-Erice and E.W. Biersack
and P. Felber and K.W. Ross and G.
Urvo y-Keller . ”Hierarchical Peer- to-
Peer Systems”, Parallel Processing
Letters, Volume 13, Issue 4,
December 2003.

[3] Jameela Al-Jaroodi, Nader Mohamed,
Hong Jiang, and David Swanson,

“Middleware Infrastructure for
Parallel and Distributed
Programming Models in
Heterogeneous Systems”, IEEE
Transactions On Parallel and
Distributed Systems, Vol. 14, No. 11,
November 2003.

[4] Angelo Corsaro, and Douglas C.
Schmidt, ‘The Design and
Performance of Real-Time Java
Middleware”, ZEEE Transactions On
Parallel and Distributed Systems,

November 2003.
[5] Charles Zhang and Hans-Amo

Jacobsen, “Refactoring Middleware
with Aspects”, IEEE Transactions
On Parallel and Distributed Systems,

November 2003.
[6] Victor Fay-Wolfe, Lisa C. DiPippo,

Gregory Cooper, Russell Johnston,
Peter Kortmann, and Bhavani
Thuraising ham, ‘ ‘Real-Time
CORB A”, IEEE Transactions On
Parallel and Distributed Systems,
Vol. 11, No. 10, October 2000.

[7] Wenbing Zhao, Louise E. Moser,
z,c! P. Michael Melfizr-S~ith,
“Unificatim of Trmsactions and
Replication in Three-Tier
Architectures Based on CORBA”,
IEEE Transactions on Dependable
and Secure Computing, pp 14- 23,

~~1155-1167 , Vol. 14, NO. 11,

~~1058-1073 , Vol. 14, NO. 11,

Vol. 2, NO. 1, JanuXy-March 2005.

